Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.725
Filtrar
1.
Sci Rep ; 14(1): 7922, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575662

RESUMO

Breast cancer (BC) is the most prevalent malignancy in women globally. At time of diagnosis, premenopausal BC is considered more aggressive and harder to treat than postmenopausal cases. Cytochrome P450 (CYP) enzymes are responsible for phase I of estrogen metabolism and thus, they are prominently involved in the pathogenesis of BC. Moreover, CYP subfamily 2C and 3A play a pivotal role in the metabolism of taxane anticancer agents. To understand genetic risk factors that may have a role in pre-menopausal BC we studied the genotypic variants of CYP2C8, rs11572080 and CYP3A4, rs2740574 in female BC patients on taxane-based therapy and their association with menopausal status. Our study comprised 105 female patients with histologically proven BC on paclitaxel-therapy. They were stratified into pre-menopausal (n = 52, 49.5%) and post-menopausal (n = 53, 50.5%) groups. Genotyping was done using TaqMan assays and employed on Quantstudio 12 K flex real-time platform. Significant increased frequencies of rs11572080 heterozygous CT genotype and variant T allele were established in pre-menopausal group compared to post-menopausal group (p = 0.023, 0.01, respectively). Moreover, logistic regression analysis revealed a significant association between rs11572080 CT genotype and premenopausal BC. However, regarding rs2740574, no significant differences in genotypes and allele frequencies between both groups were detected. We reported a significant association between CYP2C8 genotypic variants and premenopausal BC risk in Egyptian females. Further studies on larger sample sizes are still needed to evaluate its importance in early prediction of BC in young women and its effect on treatment outcome.


Assuntos
Neoplasias da Mama , Paclitaxel , Humanos , Feminino , Paclitaxel/efeitos adversos , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP3A/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Genótipo , Sistema Enzimático do Citocromo P-450/genética
2.
Pharmacol Res Perspect ; 12(3): e1197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644590

RESUMO

Human cytochrome P450 3A4 (CYP3A4) is a drug-metabolizing enzyme that is abundantly expressed in the liver and intestine. It is an important issue whether compounds of interest affect the expression of CYP3A4 because more than 30% of commercially available drugs are metabolized by CYP3A4. In this study, we examined the effects of cholesterol and cholic acid on the expression level and activity of CYP3A4 in hCYP3A mice that have a human CYP3A gene cluster and show human-like regulation of the coding genes. A normal diet (ND, CE-2), CE-2 with 1% cholesterol and 0.5% cholic acid (HCD) or CE-2 with 0.5% cholic acid was given to the mice. The plasma concentrations of cholesterol, cholic acid and its metabolites in HCD mice were higher than those in ND mice. In this condition, the expression levels of hepatic CYP3A4 and the hydroxylation activities of triazolam, a typical CYP3A4 substrate, in liver microsomes of HCD mice were higher than those in liver microsomes of ND mice. Furthermore, plasma concentrations of triazolam in HCD mice were lower than those in ND mice. In conclusion, our study suggested that hepatic CYP3A4 expression and activity are influenced by the combination of cholesterol and cholic acid in vivo.


Assuntos
Colesterol , Ácido Cólico , Citocromo P-450 CYP3A , Fígado , Microssomos Hepáticos , Triazolam , Ácido Cólico/metabolismo , Animais , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Microssomos Hepáticos/metabolismo , Colesterol/metabolismo , Colesterol/sangue , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Triazolam/farmacocinética , Triazolam/metabolismo , Humanos , Camundongos Transgênicos , Hidroxilação
3.
Biomolecules ; 14(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540686

RESUMO

Low efficacy of treatments and chemoresistance are challenges in addressing refractory hepatocellular carcinoma (HCC). SPINK1, an oncogenic protein, is frequently overexpressed in many HCC cases. However, the impact of SPINK1 on HCC treatment resistance remains poorly understood. Here, we elucidate the functions of SPINK1 on HCC therapy resistance. Analysis of SPINK1 protein level reveals a correlation between elevated SPINK1 expression and unfavorable prognosis. Furthermore, intercellular variations in SPINK1 expression levels are observed. Subsequent examination of single cell RNA-sequencing data from two HCC cohorts further suggest that SPINK1-high cells exhibit heightened activity in drug metabolic pathways compared to SPINK1-low HCC cells. High SPINK1 expression is associated with reduced sensitivities to both chemotherapy drugs and targeted therapies. Moreover, spatial transcriptomics data indicate that elevated SPINK1 expression correlates with non-responsive phenotype during treatment with targeted therapy and immune checkpoint inhibitors. This is attributed to increased levels of drug metabolic regulators, especially CES2 and CYP3A5, in SPINK1-high cells. Experimental evidence further demonstrates that SPINK1 overexpression induces the expression of CES2 and CYP3A5, consequently promoting chemoresistance to sorafenib and oxaliplatin. In summary, our study unveils the predictive role of SPINK1 on HCC treatment resistance, identifying it as a potential therapeutic target for refractory HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Inibidor da Tripsina Pancreática de Kazal/genética , Inibidor da Tripsina Pancreática de Kazal/metabolismo , Inibidor da Tripsina Pancreática de Kazal/uso terapêutico , Citocromo P-450 CYP3A/genética , Perfilação da Expressão Gênica , RNA , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
4.
Clin Transl Sci ; 17(3): e13768, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38465776

RESUMO

Plasma 4ß-hydroxycholesterol (OHC) has drawn attention as an endogenous substrate indicating CYP3A activity. Plasma 4ß-OHC is produced by hydroxylation by CYP3A4 and CYP3A5 and by cholesterol autoxidation. Plasma 4α-OHC is produced by cholesterol autoxidation and not affected by CYP3A activity. This study aimed to evaluate the usefulness of plasma 4ß-OHC concentration minus plasma 4α-OHC concentration (4ß-OHC-4α-OHC) compared with plasma 4ß-OHC concentration and 4ß-OHC/total cholesterol (TC) ratio in cross-sectional evaluation of CYP3A activity. Four hundred sixteen general adults were divided into 191 CYP3A5*1 carriers and 225 non-carriers. Twenty-six patients with chronic kidney disease (CKD) with CYP3A5*1 allele were divided into 14 with CKD stage 3 and 12 with stage 4-5D. Area under the receiver operating characteristic curve (AUC) for the three indices were evaluated for predicting presence or absence of CYP3A5*1 allele in general adults, and for predicting CKD stage 3 or stage 4-5D in patients with CKD. There was no significant difference between AUC of 4ß-OHC-4α-OHC and AUC of plasma 4ß-OHC concentration in general adults and in patients with CKD. AUC of 4ß-OHC-4α-OHC was significantly smaller than that of 4ß-OHC/TC ratio in general adults (p = 0.025), but the two indices did not differ in patients with CKD. In conclusion, in the present cross-sectional evaluation of CYP3A activity in general adults and in patients with CKD with CYP3A5*1 allele, the usefulness of 4ß-OHC-4α-OHC was not different from plasma 4ß-OHC concentration or 4ß-OHC/TC ratio. However, because of the limitations in study design and subject selection of this research, these findings require verification in further studies.


Assuntos
Hidroxicolesteróis , Insuficiência Renal Crônica , Adulto , Humanos , Citocromo P-450 CYP3A/genética , Estudos Transversais , Colesterol , Biomarcadores
5.
Pharmacogenomics ; 25(4): 187-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506326

RESUMO

This study shows that the distribution of CYP3A5 alleles (*1, *3, *6 and *7) and genotype-predicted CYP3A5 phenotypes vary significantly across Latin American cohorts (Brazilians and the One Thousand Genomes Admixed American superpopulation), as well as among subcohorts comprising individuals with the highest proportions of Native, European or sub-Saharan African ancestry. Differences in biogeographical ancestry across the study groups are the likely explanation for these results. The differential distribution of CYP3A5 phenotypes has major pharmacogenomic implications, affecting the proportion of individuals carrying high risk CYP3A5 phenotypes for the immunosuppressant tacrolimus and the number of patients that would need to be genotyped to prevent acute rejection in kidney transplant recipients under tacrolimus treatment.


Assuntos
Farmacogenética , População da América do Sul , Tacrolimo , Humanos , Tacrolimo/efeitos adversos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , América Latina , Imunossupressores/efeitos adversos , Fenótipo , Genótipo , Rejeição de Enxerto/genética , Polimorfismo de Nucleotídeo Único/genética
6.
Biomed Khim ; 70(1): 33-40, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450679

RESUMO

Ruthenium nitrosyl complexes are actively investigated as antitumor agents. Evaluation of potential interactions between cytochromes P450 (CYPs) with new compounds is carried out regularly during early drug development. In this study we have investigated the cytotoxic and antiproliferative activities of ruthenium nitrosyl complexes with methyl/ethyl esters of nicotinic and isonicotinic acids and γ-picoline against 2D and 3D cultures of human hepatocellular carcinoma HepG2 and non-cancer human lung fibroblasts MRC-5, assessed their photoinduced activity at λrad = 445 nm, and also evaluated their modulating effect on CYP3A4, CYP2C9, and CYP2C19. The study of cytotoxic and antiproliferative activities against 2D and 3D cell models was performed using phenotypic-based high content screening (HCS). The expression of CYP3A4, CYP2C9, and CYP2C19 mRNAs and CYP3A4 protein was examined using target-based HCS. The results of CYP3A4 mRNA expression were confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). The ruthenium nitrosyl complexes exhibited a dose-dependent cytotoxic effect against HepG2 and MRC-5 cells. The cytotoxic activity of complexes with ethyl isonicotinate (1) and nicotinate (3, 4) was significantly lower for MRC-5 than for HepG2, for a complex with methyl isonicotinate (2) it was higher for MRC-5 than for HepG2, for a complex with γ-picoline (5) it was comparable for both lines. The antiproliferative effect of complexes 2 and 5 was one order of magnitude higher for MRC-5; for complexes 1, 3, and 4 it was comparable for both lines. The cytotoxic activity of all compounds for 3D HepG2 was lower than for 2D HepG2, with the exception of 4. Photoactivation affected the activity of complex 1 only. Its cytotoxic activity decreased, while the antiproliferative activity increased. The ruthenium nitrosyl complexes 1-4 acted as inducers of CYP3A4 and CYP2C19, while the complex with γ-picoline (5) induced of CYP3A4. Among the studied ruthenium nitrosyl complexes, the most promising potential antitumor compound is the ruthenium compound with methyl nicotinate (4).


Assuntos
Antineoplásicos , Rutênio , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP2C19 , Rutênio/farmacologia , Células Hep G2 , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450 , Antineoplásicos/farmacologia , Picolinas
7.
Clin Transl Sci ; 17(2): e13729, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38380703

RESUMO

CYP3A4 activity shows considerable interindividual variability. Although studies indicate 60%-80% is heritable, common single nucleotide variants (SNVs) in CYP3A4 together only explain ~10%. Transcriptional factors, such as the testis-specific Y-encoded-like proteins (TSPYLs) family, have been reported to regulate the expression of CYP enzymes including CYP3A4 in vitro. Here, we investigated the effect of genetic variants in TSPYL on CYP3A4 activity using data from a clinical study and a human liver bank. Five SNVs (rs3828743, rs10223646, rs6909133, rs1204807, and rs1204811) in TSPYL were selected because of a reported effect on CYP3A4 expression in vitro or suggested clinical effect. For the clinical study, whole blood concentrations, clinical data, and DNA were available from 295 kidney transplant recipients participating in the prospective MECANO study. A multivariate pharmacokinetic model adjusted for body weight, steroid treatment, and CYP3A4 genotype was used to assess the effect of the genetic variants on cyclosporine clearance. In multivariate analysis, homozygous carriers of rs3828743 had a 18% lower cyclosporin clearance compared to the wild-type and heterozygous patients (28.72 vs. 35.03 L/h, p = 0.018) indicating a lower CYP3A4 activity and an opposite direction of effect compared to the previously reported increased CYP3A4 expression. To validate, we tested associations between rs3828743 and CYP3A4 mRNA and protein expression as well as enzyme activity with data from a liver bank (n = 150). No association with any of these end points was observed. In conclusion, the totality of evidence is not in support of a significant role for TSPYL SNV rs3828743 in explaining variability in CYP3A4 activity.


Assuntos
Ciclosporina , Transplante de Rim , Masculino , Humanos , Ciclosporina/farmacocinética , Citocromo P-450 CYP3A/genética , Imunossupressores/farmacocinética , Fatores de Transcrição/genética , Transplante de Rim/efeitos adversos , Estudos Prospectivos , Genótipo , Polimorfismo de Nucleotídeo Único
8.
Addict Behav ; 153: 107996, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394959

RESUMO

Early positive subjective effects of cannabis predict the development of cannabis use disorder (CUD). Genetic factors, such as the presence of cytochrome P450 genetic variants that are associated with reduced Δ9-tetrahydrocannabinol (THC) metabolism, may contribute to individual differences in subjective effects of cannabis. Young adults (N = 54) with CUD or a non-CUD substance use disorder (control) provided a blood sample for DNA analysis and self-reported their early (i.e., effects upon initial uses) and past-year positive and negative subjective cannabis effects. Participants were classified as slow metabolizers if they had at least one CYP2C9 or CYP3A4 allele associated with reduced activity. Though the CUD group and control group did not differ in terms of metabolizer status, slow metabolizer status was more prevalent among females in the CUD group than females in the control group. Slow metabolizers reported greater past year negative THC effects compared to normal metabolizers; however, slow metabolizer status did not predict early subjective cannabis effects (positive or negative) or past year positive effects. Post-hoc analyses suggested males who were slow metabolizers reported more negative early subjective effects of cannabis than female slow metabolizers. Other sex-by-genotype interactions were not significant. These initial findings suggest that genetic variation in CYP2C9 and CYP3A4 may have sex-specific associations with cannabis-related outcomes. Slow metabolizer genes may serve as a risk factor for CUD for females independent of subjective effects. Male slow metabolizers may instead be particularly susceptible to the negative subjective effects of cannabis.


Assuntos
Cannabis , Abuso de Maconha , Adulto Jovem , Humanos , Masculino , Feminino , Abuso de Maconha/complicações , Caracteres Sexuais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP2C9 , Genótipo
9.
Pharmacogenomics J ; 24(2): 4, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360955

RESUMO

CYP3A5 genetic variants are associated with tacrolimus metabolism. Controversy remains on whether CYP3A4 increased [*1B (rs2740574), *1 G (rs2242480)] and decreased function [*22 (rs35599367)] genetic variants provide additional information. This retrospective cohort study aims to address whether tacrolimus dose-adjusted trough concentrations differ between combined CYP3A (CYP3A5 and CYP3A4) phenotype groups. Heart transplanted patients (n = 177, between 2008 and 2020) were included and median age was 54 years old. Significant differences between CYP3A phenotype groups in tacrolimus dose-adjusted trough concentrations were found in the early postoperative period and continued to 6 months post-transplant. In CYP3A5 nonexpressers, carriers of CYP3A4*1B or *1 G variants (Group 3) compared to CYP3A4*1/*1 (Group 2) patients were found to have lower tacrolimus dose-adjusted trough concentrations at 2 months. In addition, significant differences were found among CYP3A phenotype groups in the dose at discharge and time to therapeutic range while time in therapeutic range was not significantly different. A combined CYP3A phenotype interpretation may provide more nuanced genotype-guided TAC dosing in heart transplant recipients.


Assuntos
Transplante de Coração , Tacrolimo , Adulto , Humanos , Pessoa de Meia-Idade , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Imunossupressores/uso terapêutico , Estudos Retrospectivos , Polimorfismo de Nucleotídeo Único , Fenótipo , Genótipo , Transplante de Coração/efeitos adversos , Transplantados
10.
BMC Nephrol ; 25(1): 48, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321419

RESUMO

PURPOSE: This study aimed to investigate the association between cytochrome P450 (CYP) 3A4*22 and cytochrome P450 oxidoreductase (POR)*28 variations and the pharmacokinetics of tacrolimus. METHODS: Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (SCI), MEDLINE, and Embase were systematically searched from inception to August 2022. The outcomes were weight-adjusted daily dose and dose-adjusted trough concentration (C0/Dose). RESULTS: The study included 2931 renal transplant recipients from 18 publications. Weight-adjusted daily dose of CYP3A4*1/*1 carriers was 0.04 (WMD = 0.04, 95% CI: 0.02 to 0.06), 0.03 (WMD = 0.03, 95% CI: 0.02 to 0.05), 0.02 (WMD = 0.02, 95% CI: 0.01 to 0.03), or 0.02 mg/kg/day (WMD = 0.02, 95% CI: 0.00 to 0.04) higher than CYP3A4*22 carriers in Caucasians at 1 month, 3 months, 6 months, or 12 months post-transplantation. Conversely, C0/Dose was lower for CYP3A4*1/*1 carriers at 3 days (SMD = -0.35, 95% CI: -0.65 to -0.06), 1 month (SMD = -0.67, 95% CI: -1.16 to -0.18), 3 months (SMD = -0.60, 95% CI: -0.89 to -0.31), 6 months (SMD = -0.76, 95% CI: -1.49 to -0.04), or 12 months post-transplantation (SMD = -0.69, 95% CI: -1.37 to 0.00). Furthermore, C0/Dose of POR*1/*1 carriers was 22.64 (WMD = 22.64, 95% CI: 2.54 to 42.74) or 19.41 (ng/ml)/(mg/kg/day) (WMD = 19.41, 95% CI: 9.58 to 29.24) higher than POR*28 carriers in CYP3A5 expressers at 3 days or 7 days post-transplantation, and higher in Asians at 6 months post-transplantation (SMD = 0.96, 95% CI: 0.50 to 1.43). CONCLUSIONS: CYP3A4*22 variant in Caucasians restrains the metabolism of tacrolimus, while POR*28 variant in CYP3A5 expressers enhances the metabolism of tacrolimus for renal transplant recipients. However, further well-designed prospective studies are necessary to substantiate these conclusions given some limitations.


Assuntos
Transplante de Rim , Tacrolimo , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Imunossupressores , Estudos Prospectivos , Polimorfismo de Nucleotídeo Único , Transplantados , Genótipo
11.
Chem Biol Interact ; 391: 110906, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340974

RESUMO

Wuzhi capsule (WZC), a commonly used Chinese patent medicine to treat various types of liver dysfunction in China, increases the exposure of tacrolimus (TAC) in liver transplant recipients. However, this interaction has inter-individual variability, and the underlying mechanism remains unclear. Current research indicates that CYP3A4/5 and drug transporters influence the disposal of both drugs. This study aims to evaluate the association between TAC dose-adjusted trough concentration (C/D) and specific genetic polymorphisms of CYP3A4/5, drug transporters and pregnane x receptor (PXR), and plasma levels of major WZC components, deoxyschisandrin and γ-schisandrin, in liver transplant patients receiving both TAC and WZC. Liquid chromatography-tandem-mass spectrometry was used to detect the plasma levels of deoxyschisandrin and γ-schisandrin, and nine polymorphisms related to metabolic enzymes, transporters and PXR were genotyped by sequencing. A linear mixed model was utilized to assess the impact of the interaction between genetic variations and WZC components on TAC lnC/D. Our results indicate a significant association of TAC lnC/D with the plasma levels of deoxyschisandrin and γ-schisandrin. Univariate analysis demonstrated three polymorphisms in the genes ABCB1 (rs2032582), ABCC2 (rs2273697), ABCC2 (rs3740066), and PXR (rs3842689) interact with both deoxyschisandrin and γ-schisandrin, influencing the TAC lnC/D. In multiple regression model analysis, the interactions between deoxyschisandrin and both ABCB1 (rs2032582) and ABCC2 (rs3740066), post-operative day (ß < 0.001, p < 0.001), proton pump inhibitor use (ß = -0.152, p = 0.008), body mass index (ß = 0.057, p < 0.001), and ABCC2 (rs717620, ß = -0.563, p = 0.041), were identified as significant factors of TAC lnC/D, accounting for 47.89% of the inter-individual variation. In summary, this study elucidates the influence of the interaction between ABCB1 and ABCC2 polymorphisms with WZC on TAC lnC/D. These findings offer a scientific basis for their clinical interaction, potentially aiding in the individualized management of TAC therapy in liver transplant patients.


Assuntos
Ciclo-Octanos , Medicamentos de Ervas Chinesas , Transplante de Rim , Lignanas , Transplante de Fígado , Compostos Policíclicos , Humanos , Tacrolimo/uso terapêutico , Imunossupressores/uso terapêutico , Citocromo P-450 CYP3A/genética , Polimorfismo Genético , Genótipo , Proteína 2 Associada à Farmacorresistência Múltipla , Interações Medicamentosas , Polimorfismo de Nucleotídeo Único
12.
Phys Chem Chem Phys ; 26(11): 8807-8814, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38421040

RESUMO

Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of more drugs in clinical use than any other xenobiotic-metabolizing enzyme. CYP3A4-mediated drug metabolism is usually allosterically modulated by substrate concentration (homotropic allostery) and other drugs (heterotropic allostery), exhibiting unusual kinetic profiles and regiospecific metabolism. Recent studies suggest that residue Phe108 (F108) of CYP3A4 may have an important role in drug metabolism. In this work, residue mutations were coupled with well-tempered metadynamics simulations to assess the importance of F108 in the allosteric effects of midazolam metabolism. Comparing the simulation results of the wild-type and mutation systems, we identify that the π-π interaction and steric effect between the F108 side chain and midazolam is favorable for the stable binding of substrate in the active site. F108 also plays an important role in the transition of substrate binding mode, which mainly induces the transition of substrate binding mode by forming π-π interactions with multiple aromatic rings of the substrate. Moreover, the side chain of F108 is closely related to the radius and depth of the 2a and 2f channels, and F108 may further regulate drug metabolism by affecting the pathway, orientation, or time of substrate entry into the CYP3A4 active site or product egress from the active site. Altogether, we suggest that F108 affects drug metabolism and regulatory mechanisms by affecting substrate binding stability, binding mode transition, and channel characteristics of CYP3A4. Our findings could promote the understanding of complicated allosteric mechanisms in CYP3A4-mediated drug metabolism, and the knowledge could be used for drug development and disease treatment.


Assuntos
Citocromo P-450 CYP3A , Midazolam , Midazolam/química , Midazolam/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Domínio Catalítico , Ligação Proteica , Simulação por Computador
13.
J Affect Disord ; 351: 309-313, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262522

RESUMO

BACKGROUND: There is great interindividual difference in the plasma concentration of quetiapine, and optimizing quetiapine therapy to achieve a balance between efficacy and safety is still a challenge. In our study, a population pharmacokinetic (PPK) model considering genetic information was developed with the expectation of comprehensively explaining this observation in Chinese patients with bipolar disorder. METHODS: Patients who were dispensed quetiapine and underwent the therapeutic drug monitoring (TDM) were included. The genotypes of CYP3A5*3, CYP2D6*10, and ABCB1 C3435T/G2677T were analyzed. Finally, a multivariable linear regression model was applied to describe the PPK of quetiapine considering the covariates weight, height and genotype information. RESULTS: A total of 175 TDM points from 107 patients were adopted for PPK model development. Resultantly, the CL/F of quetiapine in CYP3A5 expressers was 81.1 CL/h, whereas it was 43.6 CL/h in CYP3A5 nonexpressers. The interindividual variability in CL/F was 47.7 %. However, neither the ABCB1 nor CYP2D6 genotype was significantly associated with the predictor of quetiapine clearance in our study. LIMITATIONS: Only trough concentrations were collected, and the span between different points was relatively wide, impeding the application of the typical nonlinear compartment model for PPK analysis. In addition, this was a single-center study which limited the sample of wild-type CYP3A5 carriers. CONCLUSIONS: The currently established PPK model of quetiapine considering the contribution of the CYP3A5 genotype could efficiently predict the population and individual pharmacokinetic parameters of Chinese bipolar disorder patients, which could better guide the personalized therapy with quetiapine, thus to achieve the best clinical response.


Assuntos
Transtorno Bipolar , Citocromo P-450 CYP3A , Humanos , Fumarato de Quetiapina/uso terapêutico , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP2D6/genética , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Genótipo , China
14.
Clin Transplant ; 38(1): e15237, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289887

RESUMO

AIM: Wuzhi preparations (WZP) are commonly administrated with tacrolimus (TAC) in China to improve the liver function and increase the exposure of TAC. This study aims to investigate the effects of WZP on TAC in pediatric heart transplantation (HTx) patients carrying the CYP3A5*1 allele during the early period after transplantation and also make a comparison with these effects in adult recipients. METHODS: A total of 81 recipients with CYP3A5*1 allele were included and divided into the pediatric group (n = 29) and adult group (n = 52). The changes in TAC dose-corrected trough blood concentrations (C0 /D), dose requirement as well as intra-patient variability(IPV) of C0 /D after co-therapy with WZP were evaluated. RESULTS: The TAC C0 /D was significantly increased 1.7 and 1.8 times after co-administration of WZP in the pediatric and adult groups, respectively. We further analyzed the pediatric patients, found that no statistical difference was observed in TAC C0 /D before and after co-therapy with WZP in children <6 years old. The changes of C0 /D increased with the dose of the active ingredient (Schisantherin A) in adult patients, but not in pediatric patients. TAC IPV was reduced by 10.5% in pediatric patients and 4.8% in adult patients when co-administrated with WZP. Furthermore, after taking WZP, the AST and TB were dramatically lowered in pediatric recipients. CONCLUSION: Our study is the first attempt to demonstrate the effects of WZP on TAC in pediatric HTx recipients. By comparing these effects to those observed in adult recipients, valuable insights can be gained regarding the efficacy and potential benefits of WZP in the pediatric population.


Assuntos
Medicamentos de Ervas Chinesas , Transplante de Coração , Transplante de Rim , Adulto , Humanos , Criança , Tacrolimo , Imunossupressores , Alelos , Citocromo P-450 CYP3A/genética , Genótipo , Polimorfismo de Nucleotídeo Único
15.
Clin Transplant ; 38(1): e15235, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289893

RESUMO

INTRODUCTION: Tacrolimus forms the backbone of immunosuppression regimens in lung transplant recipients (LTRs). It is extensively metabolized by cytochrome P450 (CYP) 3A5 enzymes, of which polymorphisms can significantly affect tacrolimus dose requirements. It is unknown how coadministration of tacrolimus with voriconazole, a potent CYP3A5 inhibitor, affects rejection rates or empiric dose adjustments needed after voriconazole discontinuation. METHODS: This retrospective cohort study compares LTRs with poor (PR) versus intermediate/extensive (IE) CYP3A5 metabolizer phenotypes. The primary endpoint is cumulative immune outcomes within three months of voriconazole discontinuation; secondary endpoints include change in tacrolimus dose-to-concentration ratios after voriconazole discontinuation. RESULTS: Thirty-four patients underwent full analysis: 13 IE and 21 PR metabolizers. A higher proportion of IE metabolizers were African American (46.2% vs. 9.5%, p = .03). There was no significant difference in composite immune outcomes, though there was a proportionally higher frequency of new donor-specific antibody development in PR metabolizers (14.3% vs 7.7%, p = .56). Both groups required approximately 2.5 to 3-fold tacrolimus dose increases post-voriconazole discontinuation to re-attain therapeutic levels. CONCLUSION: This novel investigation sheds light on how CYP3A5 phenotype could be used to guide tacrolimus dosing, with the goal of preventing both toxicity and organ rejection.


Assuntos
Imunossupressores , Tacrolimo , Humanos , Voriconazol/uso terapêutico , Antifúngicos/uso terapêutico , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Estudos Retrospectivos , Transplantados , Genótipo , Fenótipo , Pulmão
16.
Drug Metab Dispos ; 52(3): 218-227, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195522

RESUMO

Cytochrome P450 3A4 (CYP3A4), a key enzyme, is pivotal in metabolizing approximately half of the drugs used clinically. The genetic polymorphism of the CYP3A4 gene significantly influences individual variations in drug metabolism, potentially leading to severe adverse drug reactions (ADRs). In this study, we conducted a genetic analysis on CYP3A4 gene in 1163 Chinese Han individuals to identify the genetic variations that might affect their drug metabolism capabilities. For this purpose, a multiplex polymerase chain reaction (PCR) amplicon sequencing technique was developed, enabling us to perform the genotyping of CYP3A4 gene efficiently and economically on a large scale. As a result, a total of 14 CYP3A4 allelic variants were identified, comprising six previously reported alleles and eight new nonsynonymous variants that were nominated as new allelic variants *39-*46 by the PharmVar Association. Further, functional assessments of these novel CYP3A4 variants were undertaken by coexpressing them with cytochromes P450 oxidoreductase (CYPOR) in Saccharomyces cerevisiae microsomes. Immunoblot analysis indicated that with the exception of CYP3A4.40 and CYP3A4.45, the protein expression levels of most new variants were similar to that of the wild-type CYP3A4.1 in yeast cells. To evaluate their catalytic activities, midazolam was used as a probe drug. The results showed that variant CYP3A4.45 had almost no catalytic activity, whereas the other variants exhibited significantly reduced drug metabolism abilities. This suggests that the majority of the CYP3A4 variants identified in the Chinese population possess markedly altered capacities for drug metabolism. SIGNIFICANCE STATEMENT: In this study, we established a multiplex polymerase chain reaction (PCR) amplicon sequencing method and detected the maximum number of new CYP3A4 variants in a single ethnic population. Additionally, we performed the functional characterizations of these eight novel CYP3A4 allele variants in vitro. This study not only contributes to the understanding of CYP3A4 genetic polymorphism in the Chinese Han population but also holds substantial reference value for their potential clinical applications in personalized medicine.


Assuntos
Citocromo P-450 CYP3A , Polimorfismo Genético , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Alelos , Polimorfismo Genético/genética , Microssomos/metabolismo , China
17.
Genome Biol Evol ; 16(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38207129

RESUMO

Cytochromes P450 (CYP450) are hemoproteins generally involved in the detoxification of the body of xenobiotic molecules. They participate in the metabolism of many drugs and genetic polymorphisms in humans have been found to impact drug responses and metabolic functions. In this study, we investigate the genetic diversity of CYP450 genes. We found that two clusters, CYP3A and CYP4F, are notably differentiated across human populations with evidence for selective pressures acting on both clusters: we found signals of recent positive selection in CYP3A and CYP4F genes and signals of balancing selection in CYP4F genes. Furthermore, an extensive amount of unusual linkage disequilibrium is detected in this latter cluster, indicating co-evolution signatures among CYP4F genes. Several of the selective signals uncovered co-localize with expression quantitative trait loci (eQTL), which could suggest epistasis acting on co-regulation in these gene families. In particular, we detected a potential co-regulation event between CYP3A5 and CYP3A43, a gene whose function remains poorly characterized. We further identified a causal relationship between CYP3A5 expression and reticulocyte count through Mendelian randomization analyses, potentially involving a regulatory region displaying a selective signal specific to African populations. Our findings linking natural selection and gene expression in CYP3A and CYP4F subfamilies are of importance in understanding population differences in metabolism of nutrients and drugs.


Assuntos
Citocromo P-450 CYP3A , Hominidae , Animais , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Hominidae/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Polimorfismo Genético , Seleção Genética
18.
J Appl Toxicol ; 44(5): 756-769, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38238931

RESUMO

Nitrophenols are environmental pollutants and xenobiotics, the main sources of which are diesel exhaust fumes and pesticides. The biotransformation processes that take place in the liver are defence mechanisms against xenobiotics, such as nitrophenols. Our previous study showed that the chicken ovary is an additional xenobiotic detoxification place and that nitrophenols disrupt steroidogenesis in chicken ovarian follicles. Therefore, the present study aimed to determine the in vivo and in vitro effects of 4-nitrophenol (PNP) and 3-methyl-4-nitrophenol (PNMC) on the expression and activity of phase I (CYP3A) and phase II (COMT) biotransformation enzymes in chicken ovary. In an in vivo study, hens were treated with a vehicle or 10 mg PNP or PNMC/kg b.wt. per day for 6 days. In an in vitro study, prehierarchical white and yellowish follicles, as well as the granulosa and theca layers of the three largest preovulatory follicles (F3, F2 and F1), were isolated and then incubated in a control medium or medium supplemented with PNP (10-6 M) or PNMC (10-6 M) for 24 or 48 h. Both in vivo and in vitro studies showed that nitrophenols exert tissue- and compound-dependent (PNP or PNMC) effects on CYP3A and COMT gene (real-time PCR) protein (Western blot) expression and their activity (colorimetric methods). The inhibitory effect of nitrophenols in vivo on the activity of biotransformation enzymes suggest that the ovary has the capacity to metabolise PNP and PNMC.


Assuntos
Galinhas , Citocromo P-450 CYP3A , Feminino , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Folículo Ovariano/metabolismo , Ovário , Nitrofenóis/toxicidade , Nitrofenóis/metabolismo
19.
Pharmacogenomics ; 25(1): 29-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38189154

RESUMO

Aim: Successful treatment with tacrolimus to prevent graft versus host disease (GVHD) and minimize tacrolimus-related toxicities among allogeneic hematopoietic cell transplantation (alloHCT) recipients is contingent upon quickly achieving and maintaining concentrations within a narrow therapeutic range. The primary objective was to investigate associations between CYP3A4, CYP3A5 or ABCB1 genotype and the proportion of patients that attained an initial tacrolimus goal concentration following initiation of intravenous (iv.) and conversion to oral administration. Materials & methods: We retrospectively evaluated 86 patients who underwent HLA-matched (8/8) related donor alloHCT and were prescribed a tacrolimus-based regimen for GVHD prophylaxis. Results & conclusion: The findings of the present study suggests that CYP3A5 genotype may impact attainment of initial therapeutic tacrolimus concentrations with oral administration in alloHCT recipients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Tacrolimo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Imunossupressores , Estudos Retrospectivos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/prevenção & controle , Resultado do Tratamento , Genótipo , Transplante de Células-Tronco Hematopoéticas/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética
20.
Ther Drug Monit ; 46(1): 49-56, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193880

RESUMO

BACKGROUND: Whole-blood therapeutic drug monitoring of tacrolimus is conducted to maintain tacrolimus concentrations within a safe and effective range. Changes in hematocrit cause variability in blood concentrations of tacrolimus because it is highly bound to erythrocytes. Measuring plasma concentrations may eliminate this variability; however, current methods have limitations owing to the use of cross-reactive immunoassays, plasma separation at nonbiological temperatures, and lack of clinical validation. This study aimed to develop and validate a clinically applicable method to measure plasma tacrolimus concentrations in renal transplant recipients and to examine the concentration differences between genotypic CYP3A5 expressors and nonexpressors. METHODS: Plasma tacrolimus concentrations were measured in 9 stable renal transplant recipients who were genotypic CYP3A5 expressors or nonexpressors. Tacrolimus was extracted from plasma using solid-phase extraction, and liquid chromatography-tandem mass spectrometry was used for detection and quantitation. RESULTS: This assay was sensitive, selective, and linear between 100 and 5000 ng/L, with intraassay and interassay imprecision and inaccuracy <10% and <5% respectively. The extraction recovery of tacrolimus and ascomycin was 74%. Matrix ion suppression effects were 31.5% and 35% with overall recovery of 50.6% and 48.3% for tacrolimus and ascomycin, respectively. Whole-blood concentrations accounted for approximately 46% of the variation in plasma concentrations in CYP3A5 expressors and nonexpressors. No difference in dose-adjusted whole-blood and plasma concentrations was observed between CYP3A5 expressors and nonexpressors. CONCLUSIONS: This assay is clinically applicable with excellent performance and demonstrated that tacrolimus plasma concentrations highly correlated with whole-blood concentrations.


Assuntos
Transplante de Rim , 60705 , Humanos , Cromatografia Líquida , Citocromo P-450 CYP3A/genética , Tacrolimo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...